Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38610358

RESUMO

A comprehensive analysis and simulation of two memristor-based neuromorphic architectures for nuclear radiation detection is presented. Both scalable architectures retrofit a locally competitive algorithm to solve overcomplete sparse approximation problems by harnessing memristor crossbar execution of vector-matrix multiplications. The proposed systems demonstrate excellent accuracy and throughput while consuming minimal energy for radionuclide detection. To ensure that the simulation results of our proposed hardware are realistic, the memristor parameters are chosen from our own fabricated memristor devices. Based on these results, we conclude that memristor-based computing is the preeminent technology for a radiation detection platform.

2.
J Radiol Prot ; 41(4)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33823493

RESUMO

Radioactive aerosols that arise from natural sources and nuclear accidents can be a long-term hazard to human health. Despite the heterogeneous particle deposition in the respiratory tract, uniform aerosol doses have long been assumed in respiratory radiation dosimetry predictions, such as in the compartment and uniform distribution models. It is unclear how these deposition patterns affect internal radiation doses, which are critical in the health assessment of radioactive hazards. This work seeks to quantify the radio-dosimetry sensitivity to initial deposition patterns by comparing computational and compartment/uniform models. A new approach was developed to implement the compartment model into voxel phantoms (e.g. VIP-man) for radiation dosimetry. The calculated radiation fluence, energy deposition density and organ doses were compared to those obtained from coupling computational fluid-particle dynamics (CFPD) with Monte Carlo radiation transport and to those obtained from uniform source distribution approximation. The results show that the source particle distribution within the respiratory system substantially influences the radiation dosimetry distribution. The compartment and uniform models underestimated aerosol deposition in the crania ridge, leading to lower doses in the trachea and surrounding organs. For 0.5 MeV gammas, the CFPD-Monte Carlo N-particle (MCNP) model predicted a tracheal dose twice that of the compartment model and four times the uniform model. For 1 MeV betas, the CFPD-MCNP-predicted tracheal dose is 2.6 times that of the compartment model and 14 times the uniform model. Compared to the compartment/uniform models, the CFPD approach predicted a 50% lower beta dose in the lung but higher beta doses in the heart (six times), liver (four times) and stomach (2.5 times). It is suggested that including compartments for the lung periphery and tracheal carina ridge may improve the dosimetry accuracy of compartment models.


Assuntos
Hidrodinâmica , Radiometria , Simulação por Computador , Humanos , Pulmão , Método de Monte Carlo , Radioisótopos
3.
Sci Rep ; 9(1): 17450, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31768010

RESUMO

Despite extensive efforts in studying radioactive aerosols, including the transmission of radionuclides in different chemical matrices throughout the body, the internal organ-specific radiation dose due to inhaled radioactive aerosols has largely relied on experimental deposition data and simplified human phantoms. Computational fluid-particle dynamics (CFPD) has proven to be a reliable tool in characterizing aerosol transport in the upper airways, while Monte Carlo based radiation codes allow accurate simulation of radiation transport. The objective of this study is to numerically assess the radiation dosimetry due to particles decaying in the respiratory tract from environmental radioactive exposures by coupling CFPD with Monte Carlo N-Particle code, version 6 (MCNP6). A physiologically realistic mouth-lung model extending to the bifurcation generation G9 was used to simulate airflow and particle transport within the respiratory tract. Polydisperse aerosols with different distributions were considered, and deposition distribution of the inhaled aerosols on the internal airway walls was quantified. The deposition mapping of radioactive aerosols was then registered to the respiratory tract of an image-based whole-body adult male model (VIP-Man) to simulate radiation transport and energy deposition. Computer codes were developed for geometry visualization, spatial normalization, and source card definition in MCNP6. Spatial distributions of internal radiation dosimetry were compared for different radionuclides (131I, 134,137Cs, 90Sr-90Y, 103Ru and 239,240Pu) in terms of the radiation fluence, energy deposition density, and dose per decay.


Assuntos
Aerossóis/farmacocinética , Poluentes Radioativos do Ar/farmacocinética , Simulação por Computador , Pulmão/metabolismo , Radioisótopos/farmacocinética , Radiometria , Adulto , Osso e Ossos/efeitos da radiação , Acidente Nuclear de Chernobyl , Acidente Nuclear de Fukushima , Humanos , Hidrodinâmica , Masculino , Modelos Biológicos , Método de Monte Carlo , Boca/metabolismo , Especificidade de Órgãos , Tamanho da Partícula , Imagens de Fantasmas , Sistema Respiratório/metabolismo , Glândula Tireoide/efeitos da radiação , Vísceras/efeitos da radiação
4.
Environ Geochem Health ; 36(3): 477-87, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24135898

RESUMO

The objectives of the study are to present a critical review of the (238)U, (234)U, (235)U, (226)Ra and (210)Pb levels in water samples from the EPA studies (U.S. EPA in Abandoned uranium mines and the Navajo Nation: Red Valley chapter screening assessment report. Region 9 Superfund Program, San Francisco, 2004, Abandoned uranium mines and the Navajo Nation: Northern aum region screening assessment report. Region 9 Superfund Program, San Francisco, 2006, Health and environmental impacts of uranium contamination, 5-year plan. Region 9 Superfund Program, San Franciso, 2008) and the dose assessment for the population due to ingestion of water containing (238)U and (234)U. The water quality data were taken from Sect. "Data analysis" of the published report, titled Abandoned Uranium Mines Project Arizona, New Mexico, Utah-Navajo Lands 1994-2000, Project Atlas. Total uranium concentration was above the maximum concentration level for drinking water (7.410-1 Bq/L) in 19 % of the water samples, while (238)U and (234)U concentrations were above in 14 and 17 % of the water samples, respectively. (226)Ra and (210)Pb concentrations in water samples were in the range of 3.7 × 10(-1) to 5.55 × 102 Bq/L and 1.11 to 4.33 × 102 Bq/L, respectively. For only two samples, the (226)Ra concentrations exceeded the MCL for total Ra for drinking water (0.185 Bq/L). However, the (210)Pb/(226)Ra ratios varied from 0.11 to 47.00, and ratios above 1.00 were observed in 71 % of the samples. Secular equilibrium of the natural uranium series was not observed in the data record for most of the water samples. Moreover, the (235)U/(total)U mass ratios ranged from 0.06 to 5.9 %, and the natural mass ratio of (235)U to (total)U (0.72 %) was observed in only 16 % of the water samples, ratios above or below the natural ratio could not be explained based on data reported by U.S. EPA. In addition, statistical evaluations showed no correlations among the distribution of the radionuclide concentrations in the majority of the water samples, indicating more than one source of contamination could contribute to the sampled sources. The effective doses due to ingestion of the minimum uranium concentrations in water samples exceed the average dose considering inhalation and ingestion of regular diet for other populations around the world (1 µSv/year). The maximum doses due to ingestion of (238)U or (234)U were above the international limit for effective dose for members of the public (1 mSv/year), except for inhabitants of two chapters. The highest effective dose was estimated for inhabitants of Cove, and it was almost 20 times the international limit for members of the public. These results indicate that ingestion of water from some of the sampled sources poses health risks.


Assuntos
Água Subterrânea/química , Radioisótopos de Chumbo/análise , Mineração , Rádio (Elemento)/análise , Urânio/análise , Poluentes Radioativos da Água/análise , Arizona , Estados Unidos , United States Environmental Protection Agency
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...